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Jośe Arnaldo Redinz†
Departamento de Fı́sica, Universidade Federal de Vic¸osa, 36571-000 Vic¸osa, MG, Brazil

Received 26 February 1998

Abstract. We use an exact recursion procedure to prove analytically the hyperscaling law
extended to fractals (df ν = 2− α) for the zero-field Ising ferromagnet in the whole family of
Migdal–Kadanoff-like hierarchical lattices.

1. Introduction

Classical spin systems defined on hierarchical lattices have attracted much attention in the
study of critical phenomena because these models, such as the Ising and Potts models, are
exactly soluble for these lattices. These exact results on non-Bravais lattices are important
tools for the knowledge of many complicated points in the phase diagrams of several models.
The analytical solutions of spin models on the Bethe lattice, for example, are cited by Baxter
[1] as one of the most interesting exact solutions for higher-dimensional spin systems. The
Bethe lattice can be viewed as a kind of hierarchical lattice (HL) [2–5] which is a relevant
family of non-Bravais lattices that can be considered, in many situations, as approximated
lattices of some Bravais ones (see, e.g. [6]). This is particularly true when the Migdal–
Kadanoff approximation [7, 8] is used for spin systems on hypercubic lattices, which results
in the same spin systems on HLs, giving predictions in good agreement with those obtained
for the corresponding Bravais lattices by other methods such as series, numerical, etc [8–13].
Some results are relatively simple to obtain using this kind of fractal lattices, in particular,
critical frontiers and correlation length critical exponents. However, the exact calculation
of other physical quantities, such as specific heat, magnetization, and susceptibility, as well
as their corresponding critical exponents, are much more complicated to obtain within the
HL approach and we sometimes find in the literature the use of heuristic recipes to obtain
these functions and exponents [12, 14–16]. Concerning the critical exponents and scaling
laws, the hyperscaling law (df ν = 2− α) has been numerically verified in a number of
HL systems [17–20] and has been proved analytically for the three-state antiferromagnetic
Potts model on a diamond-type HL family [21]. Concerning the Rushbrooke scaling law
(α + 2β + γ = 2), there is much less evidence in favour of its validaty on fractal systems.
It has been verified [22] in the Potts ferromagnet on the Wheatstone-bridge HL using
approximate methods in the derivation ofβ andγ . It has also been verified for the Ising
ferromagnet in anm-sheet Sierpinski gasket family using numerical values for the exponents
derived from exact expressions of the thermal quantities [19].
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Here we use a method that allows us to calculate exactly the exponentsν and α of
the Ising ferromagnet on the family of Migdal–Kadanoff-type HLs. This method was used
to calculate exactly several thermodynamical functions and critical exponents of the Ising
model on HLs [23], theq-state Potts model on some diamond-type HLs [20] and theq = 3
Potts antiferromagnet on a family of diamond-type HLs [21]. With the critical exponents
we obtained, we verify analytically, without any intermediary numerical calculation, for the
first time, as far as we know, the hyperscaling law for the Ising ferromagnet on a large
family of fractal lattices. The outline of this paper is as follows. In section 2 we define
the model on the HLs and explain the method we use. In section 3 we derive a recursion
relation for the systems’ internal energy and the renormalization group (RG) transformation
of the ferromagnetic coupling. In section 4 we verify analytically the hyperscaling law and
give conclusions in section 5.

2. Model

We consider the zero-field Ising ferromagnet on the family of the Migdal–Kadanoff-like
HLs. These lattices are generated in an iterative manner, starting from a two-point lattice
joined by a single bond (leveln = 0) which is replaced by a basic cell consisting ofP
branches in parallel, each of them comprisingb bonds in series. Then level is obtained
from the previous one by replacing each bond by the basic cell. This recursive procedure is
illustrated in figure 1 for the cases (P = 2, b = 2) (the diamond HL) and (P = 2, b = 3).

In the n → ∞ limit one obtains a lattice, which we denote as HL(P,b), with fractal
dimension

df (P, b) = lnPb

ln b
. (1)

In the following calculations the paramatersP > 2 andb > 2 are fixed. The notations
F(P,b) or F (P,b) will denote the quantityF calculated for the HL(P,b) particular case of the
HL family.

Figure 1. The first three steps of construction of the HL(P=2,b=2) and HL(P=2,b=3). The open
circles are the root sites of the HLs.
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At each vertexi of the HL(P,b) at then level we associate an Ising spin variableσi = ±1,
and consider the model described by the dimensionless Hamiltonian

−βHn = Kn
∑
〈i,j〉

σiσj (2)

whereβ = 1/kBT , T being the temperature,Kn = βJn andJn > 0 is the coupling constant
between nearest-neighbour pairs at then level. The sum is over all the first neighbours〈i, j〉
of the lattice. The partition function, at thenth level, can be formally calculated through
the expression

Zn =
∑
{σ }

exp

(
Kn
∑
〈i,j〉

σiσj

)
. (3)

If we perform a partial trace over all the spins at thenth level HL, with the exception of
those spins belonging to a particular basic cell (see figure 2), this partition function will be
expressed as a trace over the remaining spins (those belonging to the basic cell) with an
equivalent HamiltonianHE given by (for the HL shown in figure 2)

HE = C +Kn(µ1σ + µ1σ
′ + µ2σ + µ2σ

′)+KEµ1µ2+H1µ1+H2µ2 (4)

whereC, KE , H1 andH2 are unknown functions of the coupling constantKn. The chosen
basic cell is connected with the rest of the lattice by the spinsµ1 andµ2. σ andσ ′ are the
internal spins of the basic cell which appear only at thenth level of the lattice. The effective
fields (H1 andH2) and coupling (KE) are due to the influence of the rest of the lattice over
the external spinsµ1 and µ2. In the next section we use this effective Hamiltonian to
calculate the relation between the internal energies at different levels of the HL.

3. Recursion relations

The dimensionless internal energy per bond for then-level system is given by

En = 〈Hn〉
−JnN(P,b)n = 〈µσ 〉 (5)

whereN(P,b)n is the number of bonds andµ andσ are any two nearest-neighbour spins at
the n-level HL(P,b).

Figure 2. At the level n, each bond of the (n − 1)-level lattice is replaced by the basic cell
(with P = 2 andb = 2 in this figure). The averages involving the sites which appear only at
thenth level (σ andσ ′) are related to the averages involving the sites of the previous level (µ1

andµ2) through the system of equations derived from the equivalent Hamiltonian given in the
text.
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Using the Hamiltonian given by equation (4) (and its generalizations for other lattices)
we can calculate the quantities related to the spinsµ1 and µ2 which can be formally
expressed as

Zn = f1(Kn,KE,H1, H2, C)

Zn〈µ1µ2〉 = f2(Kn,KE,H1, H2, C)

Zn〈µ1〉 = f3(Kn,KE,H1, H2, C)

Zn〈µ2〉 = f4(Kn,KE,H1, H2, C).

(6)

We can also calculate the averages involving the spins belonging to the latest level (n), in
particular

〈σ1σ2〉 = g1(Kn,KE,H1, H2, C) (7)

where σ1 and σ2 are first-neighbour spins in the HL(P,b), and thus, from equation (5),
〈σ1σ2〉 = En. Inverting the system given by equations (6), we obtain the parametersC,
KE , H1 andH2 as functions of the averages involving spinsµ of the leveln − 1 which
can be substituted in equation (7) to obtain an exact recursion relation for the dimensionless
energyEn. This recursion can be formally expressed as

E(b)n =
A(b)n

B
(b)
n

E
(b)

n−1+
C(b)n

B
(b)
n

(8)

whereA(b)n , B(b)n andC(b)n , which depend on the particular HL(P,b) lattice we use through
the parameterb (the parameterP does not appear due to the equivalence between the
parallel branches in the basic cell), are functions of the couplingKn. Therefore, since we
fix the system energy at the zeroth level (a single bond), it is straightforward to calculate
the energy at the successive levels by the iteration of equation (8). The explicit expressions
of the functionsA(b)n , B(b)n andC(b)n can be easily obtained by algebraic computation. We
obtain

A(b) = (x4− 1)b−1 for b = 2, 3, . . .

C(2) = x4− 1

C(b) = (x4− 1)B(b−1) for b = 3, 4, . . .

and

B(2) = 2(x4+ 1)

B(3) = (x4+ 3)(3x4+ 1)

B(4) = 4(x4+ 1)(x8+ 6x4+ 1)

B(5) = (x8+ 10x4+ 5)(5x8+ 10x4+ 1) (9)

B(6) = 2(x4+ 3)(x4+ 1)(3x4+ 1)(x4− 2x3+ 2x2+ 2x + 1)(x4+ 2x3+ 2x2− 2x + 1)

. . .

B(10) = 2(x4+ 1)(5x8+ 10x4+ 1)(x8+ 10x4+ 5)(x16+ 44x12+ 166x8+ 44x4+ 1)

. . .

where we defined the variablex ≡ eK .
In order to complete our recursive equations we need the renormalization of the coupling

Kn−1 = K ′ (or, equivalentlyxn−1 = x ′) in terms of the couplingKn = K (or xn = x). This
is established in a standard way by preserving the correlation function between the roots of
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the HL, i.e. by explicitly computing the partial trace over the internal spins of the HL(P,b)s
basic cell and imposing the following equality

Trinternal spinsexpH1(K) = exp(C +H0(K
′)) (10)

whereH1 is the Hamiltonian of the basic cell (leveln = 1), H0 is the Hamiltonian of one
single bond (leveln = 0) andC is a constant. We obtain

x ′(x) =
(

1+ U(x)b
1− U(x)b

)P/2
whereU(x) ≡ x2− 1

x2+ 1
. (11)

For b = 2 (the diamond-type HLs) our renormalization group (RG) transformation recovers
the resultK ′ = P ln

√
cosh(2K) of [24]. Equation (11) admits, for allP > 2 andb > 2,

two trivial stable fixed points, namelyx = 1 (T →∞) (paramagnetic phase) andx →∞
(T = 0) (ferromagnetic phase), as well as a critical (unstable) fixed point denoted byx∗(P,b)
(0< x∗(P,b) <∞). Linearization of equation (11) in the neighbourhood of the critical point
x∗(P,b) leads to the corresponding thermal (correlation length) critical exponentν(P,b):

ν(P,b) = ln b

ln r(P,b)
wherer(P,b) ≡ dx ′(x)

dx

∣∣∣∣
x∗(P,b)

. (12)

4. Hyperscaling law

With the above recursive relations, the hyperscaling law extended to fractal systems, namely

df ν = 2− α (13)

can be proved analytically for the Ising ferromagnet for the whole set of HL(P,b) fractals.
First, assuming in the neighbourhood of the critical temperatureTc(P,b) (or x∗(P,b)) that the
energyEn can be written asEn = Ec+λ(εn)σ , whereEc = E(x∗(P,b)) andεn = (x∗(P,b)−xn),
we obtain, from equation (8), the following expression for the exponentσ :

σ(P,b) =
ln(B(b)(x)/A(b)(x)) |x∗(P,b)

ln r(P,b)
. (14)

Since the specific heat is related to the derivative of the internal energy with respect to the
temperature, we obtain thatα(P,b) = 1− σ(P,b).

Using the expressions of equations (1), (12) and (14) in equation (13) we obtain

bP = r(P,b) B
(b)

A(b)

∣∣∣∣
x∗(P,b)

(15)

which, after some simplifications, reduces to the final form of the hyperscaling law, in our
notation, for the HL(P,b):

1

4
= x2

c

(x4
c − 1)

1

(U−bc − Ub
c )

B(b)

A(b)

∣∣∣∣
xc

(16)

wherexc ≡ x∗(P,b), U is defined in equation (11), andUc = U(xc). This identity is exactly
verified for all the HL(P,b) fractals we tested, in particular, for the cases given explicitly in
equation (10). In the simpler case (b = 2), for instance, the right-hand side of equation (16)
is given by:

B(2)

A(2)

∣∣∣∣
xc

= 2(x4
c + 1)

x4
c − 1

(17)
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while

1

(U−2
c − U2

c )
= 1

8

(x4
c − 1)2

x2
c (x

4
c + 1)

(18)

and thus

B(2)

A(2)

1

(U−2
c − U2

c )
= 1

4

x4
c − 1

x2
c

(19)

which, without any numerical calculation, gives the expected result.

5. Conclusions

We used a method that allowed us to calculate exact recurrence relations for the energy of
the zero-field Ising ferromagnet for the whole family of Migdal–Kadanoff-like hierarchical
lattices and to obtain the critical exponentsν and α. With the exact expressions of
these exponents we proved analytically, without any intermediary numerical calculation,
the validity of the hyperscaling law for this large class of fractal systems.

As is well known, the hyperscaling is an immediate outcome of the RG in the absence of
dangerous irrelevant variables. However, the point of this paper was to provide an explicit,
analytical verification of this law, something that has not been done explicitly earlier for this
large class of systems. Furthermore, as a final comment, if we admit,a priori, the exact
validity of the hyperscaling law for these systems (since the RG is exact) the functions
B(b)(x) which appear in equation (9) have the general form in terms of the lattice parameter
b:

B(b)(x) = 1

4x2
{(x2+ 1)2b − (x2− 1)2b} (20)

a formula that, I believe, cannot be deduced by any other independent method.

References

[1] Baxter R J 1982Exactly Solved Models in Statistical Mechanics(London: Academic)
[2] Gefen Y, Mandelbrot B B and Aharony A 1980Phys. Rev. Lett.45 855
[3] Gefen Y, Mandelbrot B B, Aharony A and Kirkpatrick S 1981Phys. Rev. Lett.47 1771
[4] Griffiths R B and Kauffman M 1982Phys. Rev.B 26 5022
[5] Melrose J R 1983J. Phys. A: Math. Gen.16 3077
[6] Berker A N and Ostlund S 1979J. Phys. C: Solid State Phys.12 4961
[7] Migdal A A 1975 Sov. Phys.–JETP69 810

Migdal A A 1975 Sov. Phys.–JETP69 1457
[8] Kadanoff L P 1976Ann. Phys., NY100 359
[9] de Magalh̃aes A C N, Tsallis C and Schwacheim G 1980J. Phys. C: Solid State Phys.13 321

[10] Mariz A M, de Magalh̃aes A C N, daSilva L R and Tsallis C 1990Physica162A 161
[11] Tsallis C and Levy S V F 1981Phys. Rev. Lett.47 950
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